15. 3Sum
Description
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
Solution
3sum.py
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n = len(nums)
if n < 3: return []
nums.sort()
res = []
for i in range(n - 2):
if i > 0 and nums[i] == nums[i - 1]: continue
j, k = i + 1, n - 1
while j < k:
s = nums[i] + nums[j] + nums[k]
if s == 0:
res.append([nums[i], nums[j], nums[k]])
while j < k and nums[j] == nums[j + 1]: j += 1
while j < k and nums[k] == nums[k - 1]: k -= 1
j += 1
k -= 1
elif s > 0:
k -= 1
else:
j += 1
return res
3sum.cpp
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
int n = nums.size();
sort(nums.begin(), nums.end());
for (int i = 0; i < n-2; i++){
if (i > 0 && nums[i] == nums[i-1]){
continue;
}
int l = i+1, r = n-1;
while (l < r){
int s = nums[i] + nums[l] + nums[r];
if (s < 0)
l++;
else if (s > 0)
r--;
else{
vector<int> temp(3, 0);
temp[0] = nums[i];
temp[1] = nums[l];
temp[2] = nums[r];
res.push_back(temp);
while (l < r && nums[l] == nums[l+1]) l++;
while (l < r && nums[r] == nums[r-1]) r--;
l++;
r--;
}
}
}
return res;
}
};