18. 4Sum
Description
Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
,b
,c
, andd
are distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8 Output: [[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
Solution
4sum.py
class Solution:
def threeSum(self, nums: List[int], target) -> List[List[int]]:
n = len(nums)
res = []
for i in range(n - 2):
if i > 0 and nums[i] == nums[i - 1]: continue
j, k = i + 1, n - 1
while j < k:
s = nums[i] + nums[j] + nums[k]
if s == target:
res.append([nums[i], nums[j], nums[k]])
while j < k and nums[j] == nums[j + 1]: j += 1
while j < k and nums[k] == nums[k - 1]: k -= 1
j += 1
k -= 1
elif s > target:
k -= 1
else:
j += 1
return res
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
n = len(nums)
nums.sort()
res = []
for i in range(n - 3):
if i > 0 and nums[i] == nums[i - 1]: continue
for arr in self.threeSum(nums[i + 1:], target - nums[i]):
res.append([nums[i]] + arr)
return res