30. Substring with Concatenation of All Words
Description
You are given a string s
and an array of strings words
. All the strings of words
are of the same length.
A concatenated substring in s
is a substring that contains all the strings of any permutation of words
concatenated.
- For example, if
words = ["ab","cd","ef"]
, then"abcdef"
,"abefcd"
,"cdabef"
,"cdefab"
,"efabcd"
, and"efcdab"
are all concatenated strings."acdbef"
is not a concatenated substring because it is not the concatenation of any permutation ofwords
.
Return the starting indices of all the concatenated substrings in s
. You can return the answer in any order.
Example 1:
Input: s = "barfoothefoobarman", words = ["foo","bar"] Output: [0,9] Explanation: Since words.length == 2 and words[i].length == 3, the concatenated substring has to be of length 6. The substring starting at 0 is "barfoo". It is the concatenation of ["bar","foo"] which is a permutation of words. The substring starting at 9 is "foobar". It is the concatenation of ["foo","bar"] which is a permutation of words. The output order does not matter. Returning [9,0] is fine too.
Example 2:
Input: s = "wordgoodgoodgoodbestword", words = ["word","good","best","word"] Output: [] Explanation: Since words.length == 4 and words[i].length == 4, the concatenated substring has to be of length 16. There is no substring of length 16 is s that is equal to the concatenation of any permutation of words. We return an empty array.
Example 3:
Input: s = "barfoofoobarthefoobarman", words = ["bar","foo","the"] Output: [6,9,12] Explanation: Since words.length == 3 and words[i].length == 3, the concatenated substring has to be of length 9. The substring starting at 6 is "foobarthe". It is the concatenation of ["foo","bar","the"] which is a permutation of words. The substring starting at 9 is "barthefoo". It is the concatenation of ["bar","the","foo"] which is a permutation of words. The substring starting at 12 is "thefoobar". It is the concatenation of ["the","foo","bar"] which is a permutation of words.
Constraints:
1 <= s.length <= 104
1 <= words.length <= 5000
1 <= words[i].length <= 30
s
andwords[i]
consist of lowercase English letters.
Solution
substring-with-concatenation-of-all-words.cpp
class Solution {
public:
vector<int> findSubstring(string S, vector<string>& L) {
// travel all the words combinations to maintain a window
// there are wl(word len) times travel
// each time, n/wl words, mostly 2 times travel for each word
// one left side of the window, the other right side of the window
// so, time complexity O(wl * 2 * N/wl) = O(2N)
vector<int> ans;
int n = S.size(), cnt = L.size();
if (n <= 0 || cnt <= 0) return ans;
// init word occurence
unordered_map<string, int> dict;
for (int i = 0; i < cnt; ++i) dict[L[i]]++;
// travel all sub string combinations
int wl = L[0].size();
for (int i = 0; i < wl; ++i) {
int left = i, count = 0;
unordered_map<string, int> tdict;
for (int j = i; j <= n - wl; j += wl) {
string str = S.substr(j, wl);
// a valid word, accumulate results
if (dict.count(str)) {
tdict[str]++;
if (tdict[str] <= dict[str])
count++;
else {
// a more word, advance the window left side possiablly
while (tdict[str] > dict[str]) {
string str1 = S.substr(left, wl);
tdict[str1]--;
if (tdict[str1] < dict[str1]) count--;
left += wl;
}
}
// come to a result
if (count == cnt) {
ans.push_back(left);
// advance one word
tdict[S.substr(left, wl)]--;
count--;
left += wl;
}
}
// not a valid word, reset all vars
else {
tdict.clear();
count = 0;
left = j + wl;
}
}
}
return ans;
}
};