279. Perfect Squares
Description
Given an integer n
, return the least number of perfect square numbers that sum to n
.
A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1
, 4
, 9
, and 16
are perfect squares while 3
and 11
are not.
Example 1:
Input: n = 12 Output: 3 Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13 Output: 2 Explanation: 13 = 4 + 9.
Constraints:
1 <= n <= 104
Solution
perfect-squares.py
class Solution:
def numSquares(self, N: int) -> int:
dp = [inf] * (N + 1)
dp[0] = 0
for i in range(1, N + 1):
curr = inf
j = 1
while i - j * j >= 0:
k = dp[i - j * j] + 1
if k < curr:
curr = k
j += 1
dp[i] = curr
return dp[N]
perfect-squares.cpp
class Solution
{
public:
int numSquares(int n)
{
if (n <= 0)
{
return 0;
}
// cntPerfectSquares[i] = the least number of perfect square numbers
// which sum to i. Note that cntPerfectSquares[0] is 0.
vector<int> cntPerfectSquares(n + 1, INT_MAX);
cntPerfectSquares[0] = 0;
for (int i = 1; i <= n; i++)
{
// For each i, it must be the sum of some number (i - j*j) and
// a perfect square number (j*j).
for (int j = 1; j*j <= i; j++)
{
cntPerfectSquares[i] =
min(cntPerfectSquares[i], cntPerfectSquares[i - j*j] + 1);
}
}
return cntPerfectSquares.back();
}
};