460. LFU Cache
Description
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, 3, null, -1, 3, 4] Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
Solution
lfu-cache.py
class Node:
def __init__(self, key = None, value = None):
self.key = key
self.value = value
self.freq = 1
self.prev = None
self.next = None
class DLinkedList:
def __init__(self):
self.head = Node()
self.tail = Node()
self.head.next = self.tail
self.tail.prev = self.head
self.size = 0
def __len__(self):
return self.size
def append(self, node):
node.next = self.head.next
node.prev = self.head
node.next.prev = node
self.head.next = node
self.size += 1
def pop(self, node = None):
if self.size == 0: return
if not node:
node = self.tail.prev
p = node.prev
n = node.next
p.next = n
n.prev = p
self.size -= 1
return node
class LFUCache:
def __init__(self, capacity: int):
self.size = 0
self.capacity = capacity
self.mp = dict()
self.minFreq = 0
self.freq = collections.defaultdict(DLinkedList)
def _update(self, node):
freq = node.freq
self.freq[freq].pop(node)
if self.minFreq == freq and not self.freq[freq]:
self.minFreq += 1
node.freq += 1
freq = node.freq
self.freq[freq].append(node)
def get(self, key: int) -> int:
if key not in self.mp: return -1
node = self.mp[key]
self._update(node)
return node.value
def put(self, key: int, value: int) -> None:
if self.capacity == 0: return
if key in self.mp:
node = self.mp[key]
node.value = value
self._update(node)
else:
if self.size == self.capacity:
node = self.freq[self.minFreq].pop()
del self.mp[node.key]
self.size -= 1
node = Node(key, value)
self.mp[key] = node
self.freq[1].append(node)
self.minFreq = 1
self.size += 1
# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)