629. K Inverse Pairs Array
Description
For an integer array nums
, an inverse pair is a pair of integers [i, j]
where 0 <= i < j < nums.length
and nums[i] > nums[j]
.
Given two integers n and k, return the number of different arrays consist of numbers from 1
to n
such that there are exactly k
inverse pairs. Since the answer can be huge, return it modulo 109 + 7
.
Example 1:
Input: n = 3, k = 0 Output: 1 Explanation: Only the array [1,2,3] which consists of numbers from 1 to 3 has exactly 0 inverse pairs.
Example 2:
Input: n = 3, k = 1 Output: 2 Explanation: The array [1,3,2] and [2,1,3] have exactly 1 inverse pair.
Constraints:
1 <= n <= 1000
0 <= k <= 1000
Solution
k-inverse-pairs-array.py
class Solution:
def kInversePairs(self, n: int, k: int) -> int:
max_possible_inversions = (n * (n-1)//2)
if k > max_possible_inversions:
return 0
if k == 0 or k == max_possible_inversions:
return 1
MOD = 10 ** 9 + 7
dp = [[0]*(k+1) for _ in range(n+1)]
for i in range(1, n+1):
dp[i][0] = 1
dp[2][1] = 1
for i in range(3,n+1):
max_possible_inversions = min(k, i*(i-1)//2)
for j in range(1, max_possible_inversions + 1):
dp[i][j] = dp[i][j-1] + dp[i-1][j]
if j>=i:
dp[i][j] -= dp[i-1][j - i]
dp[i][j] = (dp[i][j] + MOD) % MOD
return dp[n][k]