918. Maximum Sum Circular Subarray
Description
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
Solution
maximum-sum-circular-subarray.py
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
N = len(nums)
currMax = mmax = currMin = mmin = total = nums[0]
for i in range(1, N):
currMax = max(nums[i], nums[i] + currMax)
mmax = max(mmax, currMax)
currMin = min(nums[i], nums[i] + currMin)
mmin = min(mmin, currMin)
total += nums[i]
return max(mmax, total - mmin) if mmax > 0 else mmax