923. 3Sum With Multiplicity
Description
Given an integer array arr
, and an integer target
, return the number of tuples i, j, k
such that i < j < k
and arr[i] + arr[j] + arr[k] == target
.
As the answer can be very large, return it modulo 109 + 7
.
Example 1:
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (arr[i], arr[j], arr[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times.
Example 2:
Input: arr = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.
Example 3:
Input: arr = [2,1,3], target = 6 Output: 1 Explanation: (1, 2, 3) occured one time in the array so we return 1.
Constraints:
3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300
Solution
3sum-with-multiplicity.py
class Solution:
def threeSumMulti(self, arr: List[int], target: int) -> int:
n = len(arr)
count = Counter()
M = 10 ** 9 + 7
res = 0
for i in range(n):
res = (res + count[target - arr[i]]) % M
for j in range(i):
m = arr[i] + arr[j]
count[m] += 1
return res
3sum-with-multiplicity.java
class Solution {
public int threeSumMulti(int[] A, int target) {
Map<Integer, Integer> map = new HashMap<>();
int res = 0;
int mod = 1000000007;
for (int i = 0; i < A.length; i++) {
res = (res + map.getOrDefault(target - A[i], 0)) % mod;
for (int j = 0; j < i; j++) {
int temp = A[i] + A[j];
map.put(temp, map.getOrDefault(temp, 0) + 1);
}
}
return res;
}
}