Skip to content

1128. Number of Equivalent Domino Pairs

Difficulty Topics

Description

Given a list of dominoes, dominoes[i] = [a, b] is equivalent to dominoes[j] = [c, d] if and only if either (a == c and b == d), or (a == d and b == c) - that is, one domino can be rotated to be equal to another domino.

Return the number of pairs (i, j) for which 0 <= i < j < dominoes.length, and dominoes[i] is equivalent to dominoes[j].

 

Example 1:

Input: dominoes = [[1,2],[2,1],[3,4],[5,6]]
Output: 1

Example 2:

Input: dominoes = [[1,2],[1,2],[1,1],[1,2],[2,2]]
Output: 3

 

Constraints:

  • 1 <= dominoes.length <= 4 * 104
  • dominoes[i].length == 2
  • 1 <= dominoes[i][j] <= 9

Solution

number-of-equivalent-domino-pairs.py
class Solution:
    def numEquivDominoPairs(self, A: List[List[int]]) -> int:
        n = len(A)
        mp = collections.defaultdict(int)

        def make(A):
            return (min(A), max(A))

        res = 0
        for i in range(n):
            m = make(A[i])
            res += mp[m]

            mp[m] += 1

        return res