1235. Maximum Profit in Job Scheduling
Description
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70] Output: 120 Explanation: The subset chosen is the first and fourth job. Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60] Output: 150 Explanation: The subset chosen is the first, fourth and fifth job. Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4] Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Solution
maximum-profit-in-job-scheduling.py
class Solution:
def jobScheduling(self, startTime: List[int], endTime: List[int], profits: List[int]) -> int:
jobs = sorted(zip(startTime, endTime, profits), key = lambda x : x[1])
dp = [[0, 0]]
for start, end, profit in jobs:
i = bisect.bisect(dp, [start + 1]) - 1
if dp[i][1] + profit > dp[-1][1]:
dp.append([end, dp[i][1] + profit])
return dp[-1][1]