1329. Sort the Matrix Diagonally
Description
A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end. For example, the matrix diagonal starting from mat[2][0]
, where mat
is a 6 x 3
matrix, includes cells mat[2][0]
, mat[3][1]
, and mat[4][2]
.
Given an m x n
matrix mat
of integers, sort each matrix diagonal in ascending order and return the resulting matrix.
Example 1:
Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]] Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]
Example 2:
Input: mat = [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]] Output: [[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
1 <= mat[i][j] <= 100
Solution
sort-the-matrix-diagonally.py
class Solution:
def diagonalSort(self, mat: List[List[int]]) -> List[List[int]]:
rows, cols = len(mat), len(mat[0])
mp = collections.defaultdict(list)
for i in range(rows):
for j in range(cols):
mp[j-i].append(mat[i][j])
for key in mp:
mp[key] = sorted(mp[key], reverse = 1)
for i in range(rows):
for j in range(cols):
mat[i][j] = mp[j-i].pop()
return mat