1383. Maximum Performance of a Team
Description
You are given two integers n
and k
and two integer arrays speed
and efficiency
both of length n
. There are n
engineers numbered from 1
to n
. speed[i]
and efficiency[i]
represent the speed and efficiency of the ith
engineer respectively.
Choose at most k
different engineers out of the n
engineers to form a team with the maximum performance.
The performance of a team is the sum of their engineers' speeds multiplied by the minimum efficiency among their engineers.
Return the maximum performance of this team. Since the answer can be a huge number, return it modulo 109 + 7
.
Example 1:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2 Output: 60 Explanation: We have the maximum performance of the team by selecting engineer 2 (with speed=10 and efficiency=4) and engineer 5 (with speed=5 and efficiency=7). That is, performance = (10 + 5) * min(4, 7) = 60.
Example 2:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3 Output: 68 Explanation: This is the same example as the first but k = 3. We can select engineer 1, engineer 2 and engineer 5 to get the maximum performance of the team. That is, performance = (2 + 10 + 5) * min(5, 4, 7) = 68.
Example 3:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4 Output: 72
Constraints:
1 <= k <= n <= 105
speed.length == n
efficiency.length == n
1 <= speed[i] <= 105
1 <= efficiency[i] <= 108
Solution
maximum-performance-of-a-team.py
class Solution:
def maxPerformance(self, n: int, speed: List[int], efficiency: List[int], k: int) -> int:
M = 10 ** 9 + 7
heap = []
res = currSpeed = 0
for e, s in sorted(zip(efficiency, speed), reverse = 1):
currSpeed += s
heappush(heap, s)
if len(heap) > k:
currSpeed -= heappop(heap)
res = max(res, e * currSpeed)
return res % M