1508. Range Sum of Sorted Subarray Sums
Description
You are given the array nums
consisting of n
positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2
numbers.
Return the sum of the numbers from index left
to index right
(indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5 Output: 13 Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4 Output: 6 Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10 Output: 50
Constraints:
n == nums.length
1 <= nums.length <= 1000
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2
Solution
range-sum-of-sorted-subarray-sums.py
class Solution:
def rangeSum(self, nums: List[int], n: int, left: int, right: int) -> int:
n = len(nums)
arr = []
M = int(1e9+7)
for i in range(n):
s = nums[i]
for j in range(i+1,n):
s += nums[j]
nums.append(s)
nums = sorted(nums)
res = 0
for i in range(left-1, right):
res = (res + nums[i])%M
return res%M
range-sum-of-sorted-subarray-sums.cpp
class Solution {
public:
int rangeSum(vector<int>& nums, int n, int left, int right) {
vector<int> v;
for (int i = 0; i < n; ++i){
int s = 0;
for (int j = i; j < n; ++j){
s += nums[j];
v.push_back(s);
}
}
sort(v.begin(),v.end());
--left, --right;
int ans = 0, M = 1e9+7;
for (int i = left; i <= right; ++i){
ans = (ans+v[i])%M;
}
return ans;
}
};