1685. Sum of Absolute Differences in a Sorted Array
Description
You are given an integer array nums
sorted in non-decreasing order.
Build and return an integer array result
with the same length as nums
such that result[i]
is equal to the summation of absolute differences between nums[i]
and all the other elements in the array.
In other words, result[i]
is equal to sum(|nums[i]-nums[j]|)
where 0 <= j < nums.length
and j != i
(0-indexed).
Example 1:
Input: nums = [2,3,5] Output: [4,3,5] Explanation: Assuming the arrays are 0-indexed, then result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4, result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3, result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10] Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
Solution
sum-of-absolute-differences-in-a-sorted-array.py
class Solution:
def getSumAbsoluteDifferences(self, nums: List[int]) -> List[int]:
res = []
n = len(nums)
prefix = [0]
for num in nums:
prefix.append(prefix[-1] + num)
for i,x in enumerate(nums):
left = prefix[i]
right = prefix[-1] - prefix[i+1]
ans = (x*i - left) + (-x*(n-i-1) + right)
res.append(ans)
return res