1770. Maximum Score from Performing Multiplication Operations
Description
You are given two 0-indexed integer arrays nums
and multipliers
of size n
and m
respectively, where n >= m
.
You begin with a score of 0
. You want to perform exactly m
operations. On the ith
operation (0-indexed) you will:
- Choose one integer
x
from either the start or the end of the arraynums
. - Add
multipliers[i] * x
to your score.- Note that
multipliers[0]
corresponds to the first operation,multipliers[1]
to the second operation, and so on.
- Note that
- Remove
x
fromnums
.
Return the maximum score after performing m
operations.
Example 1:
Input: nums = [1,2,3], multipliers = [3,2,1] Output: 14 Explanation: An optimal solution is as follows: - Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score. - Choose from the end, [1,2], adding 2 * 2 = 4 to the score. - Choose from the end, [1], adding 1 * 1 = 1 to the score. The total score is 9 + 4 + 1 = 14.
Example 2:
Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6] Output: 102 Explanation: An optimal solution is as follows: - Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score. - Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score. - Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score. - Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score. - Choose from the end, [-2,7], adding 7 * 6 = 42 to the score. The total score is 50 + 15 - 9 + 4 + 42 = 102.
Constraints:
n == nums.length
m == multipliers.length
1 <= m <= 300
m <= n <= 105
-1000 <= nums[i], multipliers[i] <= 1000
Solution
maximum-score-from-performing-multiplication-operations.py
class Solution:
def maximumScore(self, nums: List[int], mul: List[int]) -> int:
dp = [0] * (len(mul) + 1)
for m in range(len(mul) - 1, -1, -1):
pd = [0] * (m + 1)
for l in range(m, -1, -1):
pd[l] = max(dp[l + 1] + mul[m] * nums[l],
dp[l] + mul[m] * nums[~(m - l)])
dp = pd
return dp[0]