Skip to content

1856. Maximum Subarray Min-Product

Difficulty Topics

Description

The min-product of an array is equal to the minimum value in the array multiplied by the array's sum.

  • For example, the array [3,2,5] (minimum value is 2) has a min-product of 2 * (3+2+5) = 2 * 10 = 20.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,2,3,2]
Output: 14
Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2).
2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]
Output: 18
Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3).
3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]
Output: 60
Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4).
4 * (5+6+4) = 4 * 15 = 60.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

Solution

maximum-subarray-min-product.py
class Solution:
    def maxSumMinProduct(self, nums: List[int]) -> int:
        M = 10 ** 9 + 7
        n = len(nums)
        res = 0

        prefix = [0]
        for x in nums:
            prefix.append(x + prefix[-1])

        l = [0] * n
        r = [0] * n
        stack = []

        for i in range(n):
            while stack and nums[stack[-1]] >= nums[i]:
                stack.pop()

            if stack:
                l[i] = stack[-1] + 1
            else:
                l[i] = 0

            stack.append(i)

        stack = []

        for i in reversed(range(n)):
            while stack and nums[stack[-1]] >= nums[i]:
                stack.pop()

            if stack:
                r[i] = stack[-1] - 1
            else:
                r[i] = n - 1

            stack.append(i)

        for i in range(n):
            res = max(res, nums[i] * (prefix[r[i] + 1] - prefix[l[i]]))

        return res % M