1898. Maximum Number of Removable Characters
Description
You are given two strings s
and p
where p
is a subsequence of s
. You are also given a distinct 0-indexed integer array removable
containing a subset of indices of s
(s
is also 0-indexed).
You want to choose an integer k
(0 <= k <= removable.length
) such that, after removing k
characters from s
using the first k
indices in removable
, p
is still a subsequence of s
. More formally, you will mark the character at s[removable[i]]
for each 0 <= i < k
, then remove all marked characters and check if p
is still a subsequence.
Return the maximum k
you can choose such that p
is still a subsequence of s
after the removals.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
Example 1:
Input: s = "abcacb", p = "ab", removable = [3,1,0] Output: 2 Explanation: After removing the characters at indices 3 and 1, "abcacb" becomes "accb". "ab" is a subsequence of "accb". If we remove the characters at indices 3, 1, and 0, "abcacb" becomes "ccb", and "ab" is no longer a subsequence. Hence, the maximum k is 2.
Example 2:
Input: s = "abcbddddd", p = "abcd", removable = [3,2,1,4,5,6] Output: 1 Explanation: After removing the character at index 3, "abcbddddd" becomes "abcddddd". "abcd" is a subsequence of "abcddddd".
Example 3:
Input: s = "abcab", p = "abc", removable = [0,1,2,3,4] Output: 0 Explanation: If you remove the first index in the array removable, "abc" is no longer a subsequence.
Constraints:
1 <= p.length <= s.length <= 105
0 <= removable.length < s.length
0 <= removable[i] < s.length
p
is a subsequence ofs
.s
andp
both consist of lowercase English letters.- The elements in
removable
are distinct.
Solution
class Solution:
def maximumRemovals(self, s: str, p: str, removable: List[int]) -> int:
n = len(s)
pn = len(p)
rn = len(removable)
def good(x):
x = rn - x
sset = set(removable[:x])
j = 0
for i, x in enumerate(s):
if x == p[j] and i not in sset:
j += 1
if j == pn: return True
return False
left, right = 0, rn
while left < right:
mid = (left + right) // 2
if good(mid):
right = mid
else:
left = mid + 1
return rn - left