2040. Kth Smallest Product of Two Sorted Arrays
Description
Given two sorted 0-indexed integer arrays nums1
and nums2
as well as an integer k
, return the kth
(1-based) smallest product of nums1[i] * nums2[j]
where 0 <= i < nums1.length
and 0 <= j < nums2.length
.
Example 1:
Input: nums1 = [2,5], nums2 = [3,4], k = 2 Output: 8 Explanation: The 2 smallest products are: - nums1[0] * nums2[0] = 2 * 3 = 6 - nums1[0] * nums2[1] = 2 * 4 = 8 The 2nd smallest product is 8.
Example 2:
Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6 Output: 0 Explanation: The 6 smallest products are: - nums1[0] * nums2[1] = (-4) * 4 = -16 - nums1[0] * nums2[0] = (-4) * 2 = -8 - nums1[1] * nums2[1] = (-2) * 4 = -8 - nums1[1] * nums2[0] = (-2) * 2 = -4 - nums1[2] * nums2[0] = 0 * 2 = 0 - nums1[2] * nums2[1] = 0 * 4 = 0 The 6th smallest product is 0.
Example 3:
Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3 Output: -6 Explanation: The 3 smallest products are: - nums1[0] * nums2[4] = (-2) * 5 = -10 - nums1[0] * nums2[3] = (-2) * 4 = -8 - nums1[4] * nums2[0] = 2 * (-3) = -6 The 3rd smallest product is -6.
Constraints:
1 <= nums1.length, nums2.length <= 5 * 104
-105 <= nums1[i], nums2[j] <= 105
1 <= k <= nums1.length * nums2.length
nums1
andnums2
are sorted.
Solution
kth-smallest-product-of-two-sorted-arrays.py
class Solution:
def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int:
neg1, pos1 = [-x for x in nums1 if x < 0][::-1], [x for x in nums1 if x >= 0]
neg2, pos2 = [-x for x in nums2 if x < 0][::-1], [x for x in nums2 if x >= 0]
neg = len(neg1) * len(pos2) + len(neg2) * len(pos1)
if k > neg:
k -= neg
s = 1
else:
k = neg - k + 1
neg2, pos2 = pos2, neg2
s = -1
def count(A, B, t):
res = 0
j = len(B) - 1
for x in A:
while j >= 0 and x * B[j] > t:
j -= 1
res += j + 1
return res
left, right = 0, 10 ** 10
while left < right:
mid = left + (right - left) // 2
if count(neg1, neg2, mid) + count(pos1, pos2, mid) >= k:
right = mid
else:
left = mid + 1
return left * s