2488. Count Subarrays With Median K
Description
You are given an array nums
of size n
consisting of distinct integers from 1
to n
and a positive integer k
.
Return the number of non-empty subarrays in nums
that have a median equal to k
.
Note:
- The median of an array is the middle element after sorting the array in ascending order. If the array is of even length, the median is the left middle element.
- For example, the median of
[2,3,1,4]
is2
, and the median of[8,4,3,5,1]
is4
.
- For example, the median of
- A subarray is a contiguous part of an array.
Example 1:
Input: nums = [3,2,1,4,5], k = 4 Output: 3 Explanation: The subarrays that have a median equal to 4 are: [4], [4,5] and [1,4,5].
Example 2:
Input: nums = [2,3,1], k = 3 Output: 1 Explanation: [3] is the only subarray that has a median equal to 3.
Constraints:
n == nums.length
1 <= n <= 105
1 <= nums[i], k <= n
- The integers in
nums
are distinct.
Solution
count-subarrays-with-median-k.py
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
N = len(nums)
kIndex = nums.index(k)
t = nums[kIndex]
res = 0
ld = rd = 0
left, right = defaultdict(int), defaultdict(int)
left[0] = right[0] = 1
for index in range(kIndex + 1, N):
if nums[index] > t:
rd += 1
else:
rd -= 1
right[rd] += 1
for index in range(kIndex - 1, -1, -1):
if nums[index] > t:
ld += 1
else:
ld -= 1
left[ld] += 1
for x in left.keys():
res += left[x] * right[-x]
res += left[x] * right[-x + 1]
return res